Sonya Atanasova Hadzhieva

Application of Classical Inequalities

This paper is devoted to the application of classical inequalities in algebraic
problems. The theoretical background consists of formulations of various funda-
mental inequalities such as Cauchy’s, Jensen’s, Chebyshev’s, etc. Application of
these methods is included in the second part where some Olympic-style problems
are stated and proved. The main goal of the study is to obtain a partial classifi-
cation of classical inequalities in order to show how their usage leads to certain
simplicity in proving inequalities.

1. Introduction

Learning to prove inequalities is not an easy task to achieve. It is, in
most cases, a very demanding and grueling work. Tremendous efforts,
great experience and a bit of luck are required to tackle even a simple-
looking inequality. Unlike most parts of mathematics, there isn’t a univer-
sal way of dealing with this type of problems.

Yet, a variety of methods exists, without a single clue to point out
when and which of them should be used. Furthermore, in each particular
case there is a strong probability that failure to use the most suitable
method will lead to failure to solve the problem itself. Therefore, a vital
criterion is needed to lead the solver to the correct method.

One of the most useful methods for proving inequalities is based on
classical inequalities. They are called classical, because they are usually
helpful in proving various types of inequalities.

Almost all inequalities stated in the paper are true for any nonnega-
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tive real numbers, which is a firm reason for their universal use and ap-

of their wide applicability.
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2. Theoretical background

2.1. Inequalities between harmonic mean, geometric mean,
arithmetic mean and root mean square [2]

As it is well known for the nonnegative numbers x;, x,, ..., X,, the

following inequalities are fulfilled:

n X +X, ot X XX X
_—  <fxx,.x, <2 ng A2 0
T 1_,/12...,1_ <

A — " "

XX X

harmonic geometric arithmetic root mean

mean (HM) mean (GM) mean (AM) square (RMS)
Equality holds when x; =x, =...=x,.

2.2. Cauchy-Schwarz inequality [1]

If ay, ap, ..., a, and by, by, ..., b, are real numbers and n is a natural

number, then the inequality:

(E+d+ ..+ Gr+b5+..+b))  (a) by +arby+...+a, b,)>

. . . & ) ap .
is valid. Equality holds when —=-=-=...=—, i. e. when ay, a5, ..., a,
by b, by
are proportional to by, by, ..., b,, respectively.
2.3. Chebyshev’s inequality [7]
Ifx, x» ... x, 0,y;7 ¥y ... y, O,then:

xl+x2+"'+xn Byl+y2+ "'+yn < X1)1 +x2y2+ "'+xnyn

n n n
holds true.

If one of the above sequences is reversely ordered, then the opposite
inequality is valid. Chebyshev’s inequality can be generalized for more

than two sequences. Equality holds when x;=x,=...=x, and

YI=Y2= = Yn

2.4. Young’s inequality [7]

If a, b, p and g are nonnegative numbers and %+ é =1, then the fol-

lowing inequality:
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q
£+b— ab
P q

is valid. Equality is achieved when o’ = b9,

2.5. Holder’s inequality [1]

For every two sequences of nonnegative reals ¢; and b; (i =1,2, ..., n),
(df +db +.. +a”)1’(bq+bq+ .+ b aib; +ab, + ...+ ab,

is fulfilled, where p and ¢ satisfy the conditions 117+ é =1, p symbob>Cl,

a a,
g symbob>>C1. Equality holds When A==
bl b2 bn
2.6. Minkowski’s inequality [1]
1 1
(@l +af +...+al)? (bF +bF + ...+ bD)"

1
(a1 +b1)" +(ar + bz) "+ 4 (4, b)) G

where p 1. Equality holds if and only 1f bl Zi =...= Z—:. If p<1, the
opposite inequality is valid.
2.7. Jensen’s inequality [7]

If y=f(x) is a convex function and x,, x,, ..., X, are real numbers

n
and Oy, O, ..., O, are arbitrary positive numbers with Z a; =1, then the
i=1
inequality:
flax +ax,+. . +ax,)<af(x)+af(x)+. +a,f(x,)

holds true.

Equality holds if and only if x; =x, = ... =X,,.

Another useful formulation of Jensen’s inequality is the following:

If £ (x) is convex in the interval A and x;, x,, ..., x, [ A, then:
pi x,D > pif (%)

, where py,p2, ..., pp >0

D
DZ pi > pi

Theorem: If £(x) is a continuous function in the interval A, f'(x) and
f"(x) are defined on A and f"'(x) 0, then f(x) is convex.
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2.8. One “beautiful” inequality [7]

For the positive reals ay, a,, ..., a, and by, b, ..., b, # 0, the following

inequality holds true

2 2 2 2

a,n, & (@ +ay+...+a,)

by b, by b +byt...+b,
with equality when H_B_ =&
by b b,

This inequality is called “beautiful” because it helps very often in
proving different types of problems.

Below, an easier proof (cf. [6]) of the “beautiful” inequality is pre-
sented using induction.

Proof: When n =2, the inequality reduces to:
2 2 2

LT} (a1 +a))

by by  p+b,
After multiplying by the positive number bb,(b+b,), we obtain con-

D?lbz (bl +b2)> 0

secutively:
aiby (b +by) +arby (b b)) (a1 + @)’ by by =
o dibibytai b+ a bi+aibyby
albyby+2a,ay by by +aib by =
= (@mby—ab)® 0
and the last inequality is obviously true.

If the statement is true for n =k then

2 2 2
[} a a a
B RS IS S Rt 5.0

2 o (a,+a, +...+a,{)2 . a,.’ o (a,+a, +...+ak+1)2

b, b, b, b,  b+b+..+b b,  b+b+..+h

+1

The last one follows after applying the above already proved state-

ment for n =2. Thus the inequality holds true for every natural n.

3. Applications

Problem 1 (IMO 2001, South Korea).

Prove that 1, where a, b and

a + b + c
Va*+8bc Vb +8ca Vo +8ab
c are arbitrary positive reals.

Solution 1 (AM-GM inequality) [9].

First, we shall show that:
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.
a’

a
= P 4 4
Va+8bc a/3+b/3+c/3

which is equivalent to:

4 4 4 2
B+ " (@ + sbo)
From AM-GM inequality it follows
2
¥ V2 4/3|:] 4/3|:] _ % 4/3|:| ¥ ¥ % 4/3|:|
+bp7+ - = + +a”+p7+
Rl e Hg e+ Y
2, 2 2, 1 1 2
2[9/3 e @0/36‘/3 b* =8a" be

Hence,

4 4 4 4 2 2 2
73 +b/3 +C/3H H/gH + 8a/3bc — a/3(a2 + Sb(,’)
%
Further a = 7 4 ) 7> analogously:
Qa + 8bc a/3+b/3+c/3
b% and C% holds true
Vb + 8ac /’+b Ve + 8ab /3+b/3

Now it is enough to sum up the left and the right-hand sides of the
last three inequalities to prove the problem.

Solution 2 (Cauchy-Schwarz inequality) [6].
Let be:

T
=T +8besx, =y, =bAb” + 8ac;
xl \/4az+8bc e “n Ip® +8ac ¥ “

£ i
== " +8b
& \/c + 8bha e ¢

Then using Cauchy-Schwarz inequality it follows:

(a+b+0)’< b ,__c O

a
— + — []
[Ja +8bc V' +8ca Ve +8abD

HaVa> +8bc + bVb* +8ca + ¢ V> +8ab) (1)

Using again the Cauchy-Schwarz inequality, but now within the num-
bers:

xi=Va,y =Va(a +8bc); x2=Vb, y,=Vb (b +8ca):
x3=Ve, y3=Ve (¢© +8ab) .

It follows that:
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(a\/(a2 +8bc) +b\/(b2 +8ac) +c\/(c2 + 8arb))2 < (a +b+ c)(a3 +bh 4+ 24abc)_ (2)

Therefore the problem is reduced to proving the inequality:

3
&+ + ¢+ 24abe < (a+b+c)

3

o . a2b + bzc + cza + azc + b2a + ch
which is equivalent to 6 abc.

The last inequality follows by direct application of AM-GM inequal-
ity. Thus (3) is true.

Hence, from (1), (2) and (3) we conclude that

(a+b+c)zs[ a b ‘

\/ = +\/ = +\/ = j.(a\/az+8bc+b\/b2+80a+cx/cz+8ab)s
a +8hc b +8ca ¢ +8ab

<[ a + b + ¢ j(a+b+c)2
- \/a2+8bc \/b2+8ca \/cz+8ab

b

a c
Therefore, — + — + — 1 is satisfied.
Ve +8bc Vi +8ca vV +8ab

Equality holds when a’ +8bc=b"+8ca=c"+ 8ab, ab=b’c=c’a=
2

2 2, .
=ac=ba=cbie. fora=b=c.

Problem 2.

Prove the inequality

2
a,+a,+..+a,—nyaa,..a, > (w/al -\Ja, )

where ay,a,, ...,a, are positive numbers.

Solution 1 (AM-GM inequality).

LetAy=(a,tar + ...t a)/k , G, ={aa,..a;  where k=2, ...,n.

First, it will be proved that the following remarkable inequality is valid:

(k+1) (Ar+1=Grs1) k(A—Gp) “)

x=*kdqg — k+llG i .
Denote 8 kIt is easily seen that:

kA, +xM

A== G =N G/x" =ghx
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Therefore (4) can be expanded to PUR (k+1) gkx + kgk "1 0. The lat-

ter can be easily proved as it is known that the left-hand side is divisible
by (v~ )’
¥ (= g) kg —g) = () (AT g+ gt T - k) =
= (x—g)2 (xk_l +2xk_2g +3xk_3g2 +...t+(k—1) xgk +kgk)
Thus, the left-hand side is always positive and (4) is proved. Hence,
n(4,=G) (=1)(A-1=G,-1) ... 2(A-G)=

=a;+ay—2Vajay = (Vay _V_al)z
Remark 1. This proof can be directly applied to obtain the AM-GM
inequality.
Solution 2. Rewriting the inequality in the form

Jaa, +yaa, +a,+...+a, 2n{aa,..a,

and using the AM-GM inequality for the numbers Va, ay, Vay ay, as, ...
..., @, proves the problem.
Remark 2. Each of the above two solutions shows that equality is

obtained iff a3 =a,=...=a,=Va, ay.
Problem 3. (IMO 1987, Cuba) [8].

2, 2 2 . .
Let xy, x5, ..., X, be reals, such that x] +x5 +...+x;, =1 is valid. Pro-

ve that for every natural number k£ 2, there exist integers ay, a», ... a,,
a%+a%+ ...ta,#0, such that |g| k—1 for i=1,2,...,n and
(k=1)Vn

lax; +a, %, + ... +a, xnlsknil'

Proof: Applying Cauchy-Schwarz inequality, we obtain:

2 2 2 2 2 2
171 22 )T e Sq/X 5 T | T+ <(k-—
(ax)+(ax )+ +(anxn)<\/x +X," +. X, \/a +a,” +..+a, <(k 1)\/}1

i}

where a; D{O, 1, ..., n} for i=1,2,...,n. The number of sums of the

n
form z laix;| for different values of a; is k". They are all in the interval
i=1
[0, (k= 1) Vn], which length is (k= 1) Va.
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If the interval is divided into k" — 1 equal parts, at least one of them

n n
will contain two sums z la:x;| and Z [bx| , thus:

i=1 i=

D}’l
I)Vn
bll iXi —7
% bax; z laix| o

0" (
k—1)Vn
< (Ib | = lail) lelg— o
D
Let’s define the numbers c¢;, i =1,2, ...,n, in the following way:
|b,|~|a, ifx, =0
c =
' |ai|—|b,, ifx, <0

Then ¢; (i=1,2,...,n) are integers, not all equal to O and |c,-| <k-—1.
Also, ¢ix; = (Jbi| = lai]) x| holds true [J

_ (k—l)Vn

II

O
[] the inequality XiC; is proven.

IZIIZIIZII:II:I

Problem 4 (IMO 1979, England) [6].

Find all reals a, for which there exist nonnegative numbers Xx;, Xx,,

X3, X4, X5, such that:
X, +2x, +3x, +4x, +5x;, =a
X, +23x2 +33x3 +43x4 +53x5 =a
X, +25x2 +35x3 +45x4 +55x5 =a
Solution: Applying Cauchy-Schwarz inequality for the numbers
a=Vx;, b =Vx;; a=Vix,, b, =725x2; a;=V3x;, by =735x3;
ay =74_x4, by 2745x4; as =75_x5, bs 2755x5, n =235, follows that:

— _ 2
(Vx, OTx; +Voxy (2%, + ...+ V5xs O5°xs)” <
< (v + 20+ ...+ 5xs) (v + 200 + ..+ 5xs)
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The above inequality is reduced to Hz Hz <a @3, which is in fact an
equality.
Equality holds if only if there is equality in Cauchy-Schwarz inequal-
ity, i. e. when Z—i = Z—z = Z—z = Z—i = Z—z =x, or equivalently:
Vi, =xVx; = (1-x)Vx; =0; V2x, =x V2%, - (1 —22x)73c2 =0
Vig =xV3x; = (1-3%) Va3 =0
Vix, =x745-x4 e (1-4%)Vx, =0
Voxs =xV5xs = (1-5%)Vxs =0
If x=1, x;=x=x3=x4=x5=0 and a=0 or x, =x3=x4=x5=0 and

X1 =a =1, then the solutions are (0,0,0,0,0) and (1,0,0,0,0).

If x= i, X; =x3=x4 =x5 =0 and a =4, then the solution is (0,2,0,0,0).
Ifx= %, X =x=x4=xs=0 [ a=9,x;3 =3 and the solution is (0,0,3,00).
If x= %, then a = 16, x, =4 and (0,0,0,4,0) is a solution.

If x= %, then a =25, x5 =15 and the solution is (0,0,0,0,5).

Problem 5 [4].

D

Let x,y,z,p,q,r be positive reals, such that ¥’y’Z =1 and p +¢q +
+7r=1. Prove the inequality:

2.2 2 2 22 1
p + 9y Z
gy+rz px+rz pxtgy 2

Proof: First, the Young’s inequality and its generalization will be

proved, because it will be necessary to solve the problem. The steps of the
proof are separated in three lemmas:

Lemma 1. xa—C(xSl—G, where x > 0,0 <O < 1.
Proof: For x > 0 consider the function f(x) =x% = Olx, where 0 < O <

< 1. We easily get that:

o >0when0<x<1
I - a-1_ O
f'@) =a(x DB <0whenx 1

Therefore the function increases, when x varies in the interval (0; 1]

and decreases in the interval [1; +00). Now it is clear that f(1) =1—0 is
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the greatest value of the function in the interval (0, + ) [ P -ax <.
<l1—-a

Lemma 2. «® 5P <0 a+Bb holds true where a, b, O, B > 0 and
a+p=1.

Substituting x = in Lemma 1 and using 0 +B=1,i.e. B =1-a

b
it follows:

—a[quDEbD S <Bh+aa D

O wQ|::

aabBSda+Bb

Lemma 3. a® P < da+Bb+yc is valid, where a, b, ¢, O, P,
y>0and d+B+y=1.

Proof: Applying twice Lemma 2 implies
Bry

Y]
a b d=a %:Bw cB+vD <Ga+(B+y)bB+VCB+v<

O(a+(l3+y)§ﬂ

Lemma 3 can be generalized in the following way:

CD—Ga+Bb+yc

9 [ qn

a, a, <qa t+q,a, +...+q,a,

where ay, ..., a,, q1, -, ¢, >0, g1+ +...+¢q,=1.

Now we go back to the solution of Problem 5. Applying Cauchy-
Schwarz inequality for the numbers:

pXxX blz py ¢ = rz
Vayere " prre T kg

a,=Vgy+rz,b=Vpx+rz,c,=Vpx+gq
2 qy 2 p 2 p qy

a =

leads to:

+gy+ 2 Bp°X + gy + re 0 2 (px+qy+
(px+gy+ra) <g— n 2 px+ay+ra)
[ytrz px+trz px+tqypg

Hence,

p2x2 q2y2 l’222 |
+ + —(px+qy+rz)
qytrz px+trz pxtgqgy 2

Lyl 1
2 2
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where the last inequality is obtained by means of Lemma 3. Since p + ¢ +
1 1

+r=1, Lemma 3 can be applied again (with p =q:r=%, a=;, b=;,
c 25) to imply:

1 1 1 3
3 HPE 3 D)
a(b+tc) b (cta) c (at+b)

where a, b, ¢ > 0 and abc =1.

The last inequality is a problem from IMO 1995. In what follows, an
elegant proof of that problem will be proposed by the author.

Problem 6 (IMO 1995).

Let a, b, ¢ be positive reals such that abc = 1. Prove the inequality:
1 1 1 3

3 3 t3
a(b+tc) b (cta) c (ath) 2

1 1 1 ..
Proof: Denote x=;, y=z, z=;. Then x, y, z are positive and

xyz =1 is valid. Thus, the given inequality is equivalent to:
2 2 2 5
g=-X 4 ) 4.z 3 &)
y+z z+x x+y 2

The last inequality can be proved in many different ways. Three of
them are given below.

Nol: Let S} = T+ 2+ % Assume that x y z; then
ytz x+z x+y

1 1 1
ytz z+x x+ty
Appling Chebyshev’s inequality for the triples (x, y, z) and:
Ol 1 1 O
% +7 z+x x+yH .
YO

0 s =—2—+21+2% l(x+y+Z)Dl+1+1E
ytz x+z x+y 3 %+y y+Z Z+x|:|

Substituting u =x+y, v=y +z, w=z+x and applying AM-HM in-
equality for the numbers u, v, w, it follows that:
1 1 1 I ptvtw 1 3
L L O-Lgvte 1,10 3
% + y oy +z Z + xD WD

Os=t 42 4 2 3 ©)
y+z x+z x+y 2

We will prove one generalization to the inequality (6).

ZBORNIK RADOVA 2004

GOSTI -

401



Generalization: For every O 1 and x>0, y> 0, z> 0, xyz=1, let:

x(] a Z(X 3
Sy = + 2L+ = (7
y+z z+x x+y 2

Applying the Chebyshev’s inequality for the triples:

X z -1 a-1 a-1
§+z, z-}lix7 x+ Eand SRS
0

and then using (6) and AM-GM inequality for the positive numbers
a-1 a-1 a-1
X » Y » % , we get:

3, ot 3
= 3 =2
3 5 (y2) 5

Thus, the statement is true for A =2 [ (5) is fulfilled. Equality

holds if O 1 and O <—2. It can be easily seen that if we choose x Z%,

1 1 e .
y=1,z=1lorx= oY = P =n* and n approaches infinity, the inequal-

ity is no more valid.

No2 [8]: Using the AM-GM inequality, we obtain consecutively
[O+2) +(c+x) +(x+y)]S =

22Ftx | 2ytz sxty  ,ztx
+y ) + + 7 )

:x2+y2+12+(x +
y+z z+x z+x y+z
+z x+
+ (2= + 22 EAy 2y + 2+ 2z = (v +yt ) O
xty ytz
O 2(x+y+2)F (x+y+2)° O
x+y+z_x+y+z|3} 1/3 _é
s S =3 (xyz) =3

No3: Applying Cauchy-Schwarz inequality for the triples:

—-_ X —-_J —_z 0O

_V__ > _7—— ’ n_v—— d
%l y+Z a Ty a x+yEan
(bl=;y;z’b2=;z;x’bn=;x;y)D

N sz y2 Z2 |:|
O (x+y+z2) < + + +z+z+x+x+y) O
EY+Z z+x x+y|:|

O (x+y+2)° < S (x+y+z). By means of AM-GM inequality,
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+y+ +y+ !
s = ; =2 ?,: Z% ()C)’Z)/3 :%, and the statement is

proved.

Problem 7 (BMO 1984).

Let xq, x5, ..., x, (n 2) be positive reals with sum 1. Prove that:

X X X
—l+—2+“_+L n

2=x; 2—x 2—x, 2n-1

Solution 1 (the “beautiful” inequality): Since the inequality is sym-
metric in all cases, it can be assumed that x; < x, < ... <x, therefore:

1 1 1
2_.X'1 Z_XZ 2_)(,,

Applying Chebyshev’s inequality leads to:

LR S 7
2=x; 2—x 2—x,
+x,+ ..+
X1 T Xy Xn 1 + 1 + .+ 1 %
n -x 2—x 2—x,1D
ZLEL+L+_,_+ 1 E
n%—x, 2=x 2—an
From the “beautiful” inequality for the numbers 1, 1, ..., 1 and
2=x1, 27X, ey 27Xy
2 2
1 + 1 + 4 1 n __n
2=x1 2—x 2=x, 2—x+t2-—x+...+2-x, 2n-—1
2
X X X
L 4 2 4+ .+ lgn = holds true.
2=x1 2—x 2=x, " 2n—1 2n-—1

Solution 2 (Cauchy-Schwarz inequality) [6]: Let:

1 n

The square roots are positive, because 0 <x; <1, 0<x, <1, ...,

0<x, <1. Then from the Cauchy-Schwarz inequality it follows:

X x X,
2
2=x; 2—x 2= x,
2
(x+x+...+x,) _ 1

2 Amt . tr) - AE D) 22— (L. D)
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Applying again Cauchy-Schwarz inequality leads to:

(I +x0+ . +x,0) < (1P + 12 +... +1%) (x%+x%+ )

. 2, 2 2 1 .
i.e.xitxnt.. tux, > using the fact that x; +x, + ... +x,=1.

Further,
1 1 _ n
2-(i+5+ .. +x) -1l 2m-1
n
O 4+ 2 4 40 . ; - n
2-x 2-x 2-x, 2-(x1+x3+...+x),) 2n—1
N . 1
Equality is achieved when x| = x, = ... = x, =

Problem 8 [3].

If a, b, ¢ are positive reals, prove the inequality:
Va' +ab +b* + Vb +bc+ " +V +ca+d  3Vab+be+ca

Proof (Holder’s inequality): First, the following inequality will be
proved:
(a2 +ab + b2) (b2 +bc + cz) (02 +ca+ az) (ab +bc+c a)3 ®)

For that purpose, applying Holder’s inequality leads to:
L .t LIS B e, ok, L
ab + bc + ca=(ab)3 (b)3 (a°)3 + (b7)3 (bc)3 (¢7)3 + (a”)3 (c7)3 (ac)3 <
2, 2t ne o2, 2, L
S(ab+b"+a’)3(b"+bct+c)s(a”+c" +ac)s O
O (ab+be +ca)’ < (ab+b> +d>) (B> + be + ) (a® + S +ac)

Letab+bc+ca=D,a" +ab+b*=A, b’ +bc+c* =B, > +ca+d* =C.
Then the inequality in the problem can be written in the form
VA +VB +VC 3VD and (8) in the form ABC D’. From AM-GM

inequality:

w VAVBVC)” = (aBC)" (D)) D

0 VA+VB +VC 3D

Problem 9 (Romanian National Olympiad, 2002).

If a, b and ¢ are nonnegative reals and b+t = 1, prove that:

a b c 3 — \2
+ + 2(aVa +bVb +c Ve
b2+1 c2+1 a2+1 4( )
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Proof (the “beautiful” inequality): Applying the “beautiful” inequality
for the numbers:

a; =aVa, a2=b7b, a3=ch, by =a2b2+a2, b2=b202+b2,
bs = a*+¢* when n= 3, we obtain:

a_ b

P+l C+1

+_C _ (aVa)2 + (be)2 + (c?/c)2

a2+1 a2b2+a2 b202+b2 2 2 2

ca +tc
(aVa +bVb +cVc)’

AT+

I ! (aVa +bVb +cVc)? Z%(aVa +bVb +cVc)?
241

3

But the last inequality is obvious, because:
1= (@ +b2+P)? 3@ b +b° *+ P dP) (which is equivalent to

(a2—b2)2+(b2—02)2+ (CZ_aZ)Z 0)
1 1 1 1 _3
A+ F+ld 1 A+ + l+1 4
3

Problem 10 [5].

Let n> 1 be an integer and x{, x,, ..., X,, are arbitrary positive num-
bers such that x% +x§ +... +xi =n. For arbitrary p ¢g> 1, prove that
(o +x+ . +x) +xf

xi o+ .+ x) —xf
(x1 +x2 n i

N ettt x)i+xl n@m?+1)

(o +x+ ... +x) —xrf =1

n

’ s+ x4
Proof (Jensen’s inequality): Let s= z x; and f(x)= ,
=
i=1
x [0 (0, s). Then the inequality can be written in the form:

n
Sy e "
X; B
=1
i=1
Calculating £" (x), it is easy to see that " (x) > 0. Therefore, the func-
tion f is convex, so the Jensen’s inequality can be applied:

N N P ey
;;f(xi)—f e —f(;j—

Ay
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n

On the other hand, Z x% = n and from AM-RM inequality it fol-

i=1

lows that:
—_ 2

s xitxt+...tx :7)( +x+ ... tx
2o 2 =< 12 = =10 s<n
n n n

o
Then 1 holds true and it follows:

b

s

1 ! R+ ni+1 _ n(mn?-1)
pACY) (7= 1) 57 e WA My

i=1 i=1

4. Conclusion

The classical inequalities are a highly efficient way of solving or
proving various types of inequalities. I have tried to show their wide ap-
plicability, which in most cases simplifies to a great extent the proof of
certain problems. Clear and short solutions can be easily obtained, empha-
sizing on the fact that the classical inequalities are a very helpful method
for solving many algebraic or geometric problems.
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